

Mine Safety Laboratory

Mines Rescue Pty Limited Mine Safety Laboratory 8 Hartley Drive Thornton NSW 2322 minesafetylab@coalservices.com.au ABN 15 099 078 261

Alpha Mining Equipment Pty. Ltd. 0418 373 653 admin@alphaminingequipment.com.au

24 October 2024

TEST REPORT No.: 24-0264/03

Report Version: 1

Sample Description: Poly block conveyor lanyard standoff - approx. 60 mm x 60 mm x 40 mm yellow poly Intended Use: Non-defined applications

Figs. 1a & 1b: Supplied samples

SUMMARY

The material complied with the Fire resistance performance requirements of Technical reference guide: Non-metallic materials for underground coal mines & reclaim tunnels in coal mines (TRG3608), Clause 6.3.1.2.

37 mm thick material complied with the Electrical resistance performance requirements of Technical reference guide: Non-metallic materials for underground coal mines & reclaim tunnels in coal mines (TRG3608), Clause 6.3.3.3 for 'Discharge between two surfaces'.

Analysed by: C. Teasdale

Checked by:

Authorised by:

G. Browning

Laboratory Manager Mine Safety Laboratory

> Independent testing is required to verify conformance to the original design specification whenever a change in the raw materials, formulation or manufacturing process occurs – and when the manufactured product no longer meets the design specifications.

Fire resistance

Sample:

Poly block conveyor lanyard standoff - approx. 60 mm x 60 mm x 40 mm yellow poly blocks

Test Date & Location:

19 October 2024; Mine Safety Laboratory, Thornton

Method of Analysis:

AS 1180.10B:1982 - Determination of combustion propagation characteristics of a horizontally oriented specimen of hose using surface ignition (– modified for irregularly shaped supplied samples)

Results:

TABLE 1

Test No.	Flame Exposed Sample Length	Flame Persistence	After Glow Persistence
	(mm)	(s)	(s)
1	60	1	0
2	60	1	0
3	40	5*	0
4	40	20	0
5	40	4*	0
6	60	7*	0
Mean		6 s	-

* indicates duration of flaming of molten sample material on floor of test chamber

Figs. 2a & 2b: Sample flaming during testing and sample pieces after testing

Notes:

- The test results relate only to the behaviour of the pieces under the particular conditions of the modified test; they shall not be used as a means of assessing the potential fire hazard of the product in use.
- This testing has not been independently technically verified.
- Flame temperature: approx. (957 971)°C.

Any variation from Standard/Test Method:

The Analite #T203 burner replaced with a Bunsen type burner in accordance with the annex to ISO340; test pieces did not have method-specified 300 mm lengths.

Requirements:

When tested in accordance with AS1180.10B:1982, the average duration of the flame and glowing combined should not exceed 30 seconds.

Sample Status

The material **complied** with the Fire resistance performance requirements of *TRG3608*, Clause 6.3.1.2.

Independent testing is required to verify conformance to the original design specification whenever a change in the raw materials, formulation or manufacturing process occurs – and when the manufactured product no longer meets the design specifications.

Electrical resistance - Discharge between two surfaces

Sample: Poly block conveyor lanyard standoff

- approx. 60 mm x 60 mm x 40 mm yellow poly blocks

Test Date & Location: 19 September 2024; Mine Safety Laboratory, Thornton

Method of Analysis: ISO 2878:2017 (Rubber, vulcanized or thermoplastic - Antistatic and

conductive products - Determination of electrical resistance), Cls 9.2

Results:

TABLE 2

Test	Test Piece Thickness (mm)	'Through' Electrical Resistance (MΩ)	
1	37	203	
2	37	227	
3	37.5	243	
4	37	212	
5	37.5	205	
E 2	Mean	218 ΜΩ	

Notes:

- a) Results apply only to the samples as received.
- b) Conditioned at $(23 \pm 2)^{\circ}$ C and $(50 \pm 5)\%$ relative humidity for > 16 hours.
- c) Tested at ambient temperature of 22°C with 51.5% relative humidity.
- d) Conductivity solution was applied between electrodes & sample surfaces.
- e) Resistance readings taken (5 ± 1) s after application of voltage between electrodes.
- f) This testing has not been independently technically verified.

Fig. 3: Positioning of electrodes on each sample piece for measurements

Any variation from Standard/Test Method:

Clause 9.2 ('Test Between Two Surfaces') performed only.

Samples could not provide full surface contact with flat 25 mm² electrodes.

Requirements:

Clause 6.3.3.3 of TRG3608 states that, where the normal electrical discharge path is between two surfaces the average resistance measurements shall not exceed 300 M Ω when tested in accordance with ISO 2878.

Sample Status:

37 mm thick material **complied** with the Electrical resistance performance requirements of *TRG3608*, Clause 6.3.3.3 for 'Discharge between two surfaces'.

Independent testing is required to verify conformance to the original design specification whenever a change in the raw materials, formulation or manufacturing process occurs – and when the manufactured product no longer meets the design specifications.